Saturday, 28 January 2012

SCIENTISTS


             నీల్స్ బోర్ 1885 అక్టోబర్ 7న క్రిష్టియన్ బోర్, ఎలెన్ ఎడ్లెర్ బోర్ దంపతులకు డెన్మార్క్‌లోని కోపెన్‌హాగన్‌లో జన్మించాడు. 1903లో గణితం, వేదాంతం అభ్యసించడానికి కోపెన్‌హాగన్ విశ్వవిద్యాలయంలో చేరాడు. తర్వాత వేదాంతానికి బదులు భౌతికశాస్త్రం చదవాలని నిర్ణయించుకున్నాడు. 1911లో డాక్టరేట్ పట్టా పొందాడు. 'జె.జె. థామ్సన్ వద్ద చేరి పరిశోధనలు చేశాడు. తర్వాత మాంచెస్టెర్ విశ్వవిద్యాలయంలో 'ఎర్నెస్ట్ రూథర్‌ఫర్డ్ వద్ద పనిచేస్తూ పరిశోధనలు కొనసాగించాడు.  
 
             బోర్ 1913లో పరమాణు నిర్మాణానికి సంబంధించి ఒక నమూనాను ప్రతిపాదించాడు. దీన్ని వివరించడానికి మొదటిసారిగా 'క్వాంటం సిద్ధాంతాన్ని' ఉపయోగించాడు. 1918లో సైద్ధాంతిక భౌతికశాస్త్ర పరిశోధనశాలకు అధిపతి అయ్యాడు. రెండో ప్రపంచయుద్ధ సమయంలో అమెరికా సంయుక్త రాష్ట్రాల్లోని 'లాస్ అలమోస్' పరిశోధనశాలలో అణుబాంబు నిర్మాణానికి ఇతర శాస్త్రజ్ఞులతో పాటు పరిశోధనలు చేశాడు. యుద్ధానంతరం కోపెన్‌హాగన్‌కి తిరిగొచ్చిన నీల్స్ బోర్ కేంద్రకశక్తిని శాంతియుతంగా ఉపయోగించడంపై ప్రచారం చేశాడు. CERN అనే ప్రయోగశాలను స్థాపించడంలో ప్రముఖ పాత్ర వహించాడు.
             బోర్ ప్రతిపాదించిన పరమాణు నిర్మాణానికి 1922లో భౌతికశాస్త్ర విభాగంలో నోబెల్ బహుమతి వచ్చింది. డేనిష్ ప్రభుత్వం 'ది ఆర్డర్ ఆఫ్ ది ఎలిఫెంట్' పురస్కారంతో గౌరవించింది. 1929లో ఫ్రాంక్లిన్ పతకాన్ని పొందాడు. 1997లో డేనిష్ జాతీయ బ్యాంక్ బోర్ చిత్రమున్న 500 క్రోనే కరెన్సీ నోటును విడుదల చేసింది. 1962 నవంబరు 18న కోపెన్‌హాగన్‌లో నీల్స్ బోర్ మరణించాడు. 

సూర్య నమస్కారం అంటే..? 2

  • విశ్వాసాలు.. వాస్తవాలు...
'తాతయ్యా! మొన్న సూర్య నమస్కారాలు చేసేప్పుడు చెప్పే మంత్రాలకు అర్థాలు చెప్తానన్నారుగా?' పక్కింటి పాప అమూల్య లోపలికి వస్తూనే ప్రశ్నించింది.
'ఆఆ.. చెప్తాను విను.!' 'మిత్రాయ' అంటే 'సర్వజనులకు స్నేహితుడైనవాడా' అని అర్థం. నమః అంటే 'నమస్కారము' అని అర్థం. 'రవయే' అనే పదానికి అర్థం విచిత్రంగా ఉంటుందమ్మా. 'రు-అనే శబ్దము చేత స్తుతించబడువాడా!' అని అర్థం.' 'ఇది అర్థంకాలేదు తాతయ్యా!'
'ఏం లేదమ్మా! హిందూ దేవుళ్ళకి మన పండి తులు ఒక్కొక్కళ్ళకి ఒక్కో అక్షరం లేక శబ్దం సూచించి, ఆ అక్షరం చేసే శబ్దమే వాళ్ళ పేరుగా పరి గణించి ప్రార్థిస్తున్నారు. ఉదాహరణకు 'మా' అనే శబ్దంతో లక్ష్మీదేవిని, 'గం' అనే శబ్దంతో గణపతి లేక వినాయకుణ్ణి ప్రార్థిస్తున్నారు. అలాగే 'రు' అంటే సూర్యుడు అని పెద్దలన్నారు. అర్థమైందా?'
అర్థమైందన్నట్లుగా తల ఊపింది అమూల్య. నేను కొనసాగించాను.
'సూర్యాయ' అంటే 'కార్యక్రమాలను ప్రేరేపించువాడా!' అని అర్థం. పూర్వకాలంలో అన్ని కార్యక్రమాలు, చివరకు యుద్ధాలతో సహా సూర్యోదయంతో ప్రారంభమై, సూర్యాస్తమయం తో ఆపివేయబడేవి. కాబట్టి అన్ని కార్యక్రమాలకు ఆ రోజుల్లో ప్రేరకుడు సూర్యుడే కదా! 'భానవే' అంటే 'కాంతిని కల్గినవాడా' అని అర్థం. అలాగే 'ఖగాయ' అంటే 'ఆకాశంలో సంచరించువాడా!' అని అర్థం. 'పూష్ణే' అనగా 'పోషించువాడా!' అని అర్థం. 'హిరణ్యగర్భాయ' అంటే బంగారము కడుపులో ఉన్నవాడా!' అని అర్థం. ఇది కొంచెం కవిత్వం మేళవించిన పదం. మన కవులూ 'బాలభానుడు బంగారు కిరణాలను ప్రసరిస్తున్నాడు' అంటుంటారు. అంటే ఆయన కడుపులో బంగారం ఉందనీ, అందుకే ఆయన ఉదయం, సాయంత్రాలలో బంగారు కిరణాలు ప్రసరిస్తుంటాడనీ వారి ఉద్దేశ్యం. 'మరీచయే' అంటే 'అంధకారాన్ని పారదోలే కిరణములు కలవాడా!' అని అర్థం. సూర్యోదయంతోటే చీకటి పోతుందిగదా? ఇక 'ఆదిత్యాయ' అంటే 'అదితి కుమారుడా' అని అర్థం. ఆయన తల్లి పేరు అదితి. ఆమె కుమారుడు కాబట్టి ఆయనను 'ఆదిత్యుడు' అని పిలుస్తారు.
అలాగే 'సవత్రే' అనగా 'నిద్రపోయే వాళ్ళను ప్రేరేపించి లేపువాడా' అని అర్థం. 'అర్కాయ' అంటే 'అర్పింపబడువాడా లేక పూజింపబడు వాడా' అని అర్థం. చివరగా 'భాస్కరాయ' అంటే 'కాంతిని కల్గజేయువాడా' అని అర్థం. కాబట్టి ఈ 12 పేర్లూ సూర్యునియొక్క గుణాలను తెలియజేస్తూ, ఆయనను ప్రార్థించేటప్పుడు చెప్పేవి. అర్థమయిందా అమ్మా?'
'అర్థమయింది తాతయ్యా!'
మరో విషయమేమంటే సూర్యునికి ఎదురుగా నిలబడి ఉదయం, సాయంకాలాల్లో మాత్రమే ఈ నమస్కారం చేయాలని అది చేయించే గురువులు చెబుతారు.'
'మరి సూర్యనమస్కారాల వలన ఉపయోగాలేమైనా ఉన్నాయా తాతయ్యా?'
'వాటి గురించి తర్వాత చెప్తాలేమ్మా!'
(వచ్చేవారం సూర్య నమస్కారాల
ఉపయోగాలేమిటో తెలుసుకుందాం!)
'ఈ సూర్య నమస్కారం మధ్యలో ఉచ్ఛరించే మంత్రాల వలన ఉపయోగం ఏముందో నాకూ తెలియదు. కానీ ఆ సమయాల్లో సూర్యుని ప్రత్యేకతలను జ్ఞాపకం చేసుకుంటూ నమస్కరిస్తున్నట్లు భావిస్తున్నాను.
కానీ సూర్యుని 'ఖగాయ' అంటే 'ఆకాశంలో సంచరించేవాడని వర్ణించడం'. ఇది శాస్త్రీయం కాదు. వాస్తవంగా భూమి తన చుట్టూ తాను తిరుగుతూ సూర్యుడు చుట్టూ తిరుగుతుంది. భూమి మీద ఉన్న మనకు భూమి చుట్టూ సూర్యుడి తిరుగుతున్నట్లుగా కనిపిస్తుంది. ఇక రెండో అంశం. 'ఆదిత్యాయనమః' అని సూర్యుని ప్రార్థిస్తూ 'సూర్యుడిని ఒక స్త్రీ కన్నట్లు వర్ణింపబడుతుంది'. భూగోళంలో అన్ని ప్రాణులకు మూలం సూర్యుడు. అందువలన ఈ వర్ణన అశాస్త్రీయం. మిగతా వర్ణనలన్నీ సూర్యుని 'ఒక వ్యక్తి'గా చూపిస్తున్నాయి. కవి వర్ణనలలో ఇది సాధ్యమే కానీ, శాస్త్రీయ దృక్పథం ఇలా ఒప్పుకోదు.
కానీ భంగిమలు మార్చి మార్చి చేసే ఎక్సర్‌సైజుల వలన మాత్రం ఉపయోగముందమ్మా. దానివలన అన్ని అవయవాలలో రక్త ప్రసరణ పెరిగి కీళ్ళు, కండరాలు బలపడుతాయమ్మా. అయితే కీళ్ళు, కండరాల నొప్పులున్నవారు డాక్టర్ల సూచన మేరకే సూర్య నమస్కారం చేయాలి. ఇక తూర్పు, పడమరల వైపు మాత్రమే నిలబడి సూర్య నమస్కారాన్ని చేయాలనడం అశాస్త్రీయం. ఎందుకంటే ఆ ఎక్సర్‌సైజ్‌లు ఎటుతిరిగి చేసినా ఒకే ఫలితాన్నిస్తాయని సైన్సు నిరూపించింది.
'మరి భారతీయులందరూ చేస్తే మంచిదిగా తాతయ్యా?'
'ఎవరి ఇష్టం వారిదమ్మా. ఎవరి నమ్మకం ప్రకారం వారు ఆచరిస్తారు. భారతదేశంలో కొన్ని కోట్ల మంది చంద్రుణ్ణి దేవుడిగా అంగీకరిస్తారుగాని సూర్యుణ్ణి దేవునిగా అంగీకరించరు. వారిని ఈ మంత్రాలతో కూడిన ఎక్సర్‌సైజ్‌లను వారికి ఇష్టం లేకున్నా చెయ్యమనకూడదు గదా? ఉదాహరణకు హిందువులలోనే వైష్ణవులు పూజా కార్యక్రమాలకు ముందు గణేశ పూజ చేయరు. వారు విష్వక్సేనుని పూజతో పూజా కార్యక్రమాలు, క్రతువులు అన్నీ మొదలెడతారు. వారిని గణేశపూజ చేయమని బలవంతపెట్టకూడదు గదా?'
'అవును తాతయ్యా! సూర్యనమస్కారాల గూర్చి నాకు చాలా విషయాలు చెప్పారు. థ్యాంక్సు తాతయ్యా! వస్తాను.'
'మంచిదమ్మా!'

Thursday, 26 January 2012

సోలార్‌ పవర్‌ ప్లాంట్‌తో విద్యుత్‌ ఉత్పత్తి Share ప్రజాశక్తి విలేకరి Tue, 4 Oct 2011, IST రాష్ట్రంలోనే తొలి సోలార్‌ పవర్‌ప్లాంట్‌ నూతనంగా సౌరశక్తి విద్యుత్‌ కేంద్రం 1 మెగావాట్‌ కెపాసిటీతో ప్రారంభం పర్యావరణ పరిరక్షణకు దోహదం దేశంలోనే అరుదైన, ప్రసిద్ధి గాంచిన సోలార్‌ పుటోవల్‌టెక్‌ పవర్‌ప్లాంట్‌ (సౌరశక్తి విద్యుత్‌ కేంద్రం) ఆంధ్రప్రదేశ్‌లోనే మొట్టమొదటి సారిగా షాద్‌నగర్‌ ప్రాంతంలో విద్యుత్‌ ఉత్పత్తి జరగుతోంది. అది కూడా ఒక మెగావాట్‌ విద్యుత్‌ సామర్థ్యంతో షాద్‌నగర్‌ సబ్‌స్టేషన్‌ ద్వారా ప్రజలకు సరఫరా అవుతోంది. ఇటీవలే ప్రారంభించిన ఈ సోలార్‌ పవర్‌ ప్లాంట్‌ ప్రాజెక్టు రాకతో విద్యుత్‌ రంగంలో ఇక్కడ కొత్త శకం ఆరంభమైనట్లుగా చెప్పవచ్చు. గతంలో ఇదే ప్రాంతంలో చెత్త ద్వారా విద్యుత్‌ ఉత్పత్తిని చేసే సెల్‌కో విద్యుత్‌ పరిశ్రమ అందరి దృష్టిని ఆకర్షించింది. తాజాగా సోలార్‌ పవర్‌ప్లాంట్‌ ఏర్పాటుతో మరోసారి విద్యుత్‌ రంగంలో అందరి దృష్టి ఈ ప్లాంటుపై పడింది. పర్యావరణానికి ముప్పు వాటిల్లని ఈ ప్లాంట్‌ ప్రజలకు ఉపయోగకరమే. థర్మల్‌ ప్రాజెక్టుల మాదిరిగా విచ్చలవిడిగా కార్బన్‌డయాక్సైడ్‌ను విడుదల చేయడం, కలుషిత నీరు, గాలి వచ్చే అవకాశాలు ఈ ప్లాంట్‌కు ఉండవు. ఎలాంటి హానీ జరగకుండా కేవలం సౌరశక్తితో విద్యుత్‌ ఉత్పత్తి చేసే ప్రయోజనాత్మకమైన ప్లాంట్‌గా దీనిని చెప్పవచ్చు. ఫరూఖ్‌నగర్‌ మండలం కిషన్‌నగర్‌ గ్రామ శివారులో నూతనంగా ఏర్పాటు చేసిన సోలార్‌ పవర్‌ ప్లాంట్‌ గురించి తెలుసుకోవాల్సిందే. సోలార్‌ పవర్‌ ప్రత్యేకత ఒక మెగావాట్‌ సామర్థ్యంతో స్థాపించిన ఈ పవర్‌ప్లాంట్‌లో 'సోలార్‌ మాడ్యూల్‌' (ప్లేట్స్‌)ను వాడతారు. ఒక మాడ్యూల్‌ 230 ఓల్ట్స్‌ సామర్థ్యం కలిగి ఉంటుంది. మొత్తం పవర్‌ ప్లాంట్‌లో 4,400 మాడ్యూల్స్‌ ఉంటాయి. వీటిని భూమిపై దిమ్మెలను ఏర్పాటు చేసి వాటిపై అమర్చుతారు. వీటి ద్వారా సమకూరే సౌర శక్తి విద్యుత్‌ను సేకరించేందుకు తీగలను కంట్రోల్‌ రూమ్‌కు అమర్చుతారు. కంట్రోల్‌ రూమ్‌లో 500 కిలోవాల్ట్స్‌ చొప్పున రెండు ఇన్వైటర్‌లకు డి.సి ద్వారా విద్యుత్‌ను పంపుతారు. ఇక ఇన్వైటర్‌ల ద్వారా ఎ.సిగా కాంప్యాక్ట్‌ సబ్‌స్టేషన్‌కు విద్యుత్‌ సరఫరా అవుతుంది. 300 వోల్ట్స్‌ నుంచి 11 కెవి ద్వారా ఈ సబ్‌స్టేషన్‌ నుండే విద్యుత్‌ను బయటికి పంపిణీ చేయవచ్చు. టాటా బిపి సోలార్‌ కంపెనీ ద్వారా తయారైన వీటి వస్తువులు బెంగళూరులో తయారు చేస్తారు. వాతావరణం అనుకూలంగా ఉంటే రోజుకు కనీసం 4 వేల యూనిట్లకు పైగా విద్యుత్‌ను ఉత్పత్తి చేయవచ్చు. వాతావరణం కొంత అనుకూలంగా లేకపోతే రెండు వేల యూనిట్లకుపైగా ఉత్పత్తి చేసే అవకాశం ఉంది. పవర్‌ప్లాంట్‌లో వినియోగించే విద్యుత్‌కు ప్రత్యేకంగా ఏర్పాట్లు చేశారు. ప్లాంట్‌లో ప్రత్యేకమైన సోలార్‌ మాడ్యూల్స్‌ను ఏర్పాటు చేశారు. దీనిద్వారా ఆటోమెటిక్‌గా సూర్యాస్తమయానికే ప్లాంట్‌లో విద్యుత్‌ దీపాలు వెలుగుతాయి. అదే విధంగా సూర్యోదయం కల్లా విద్యుత్‌ దీపాలు ఆరిపోయే విధానం ఇందులో అమర్చబడి ఉండటం విశేషం. ఈ ప్లాంట్‌ రక్షణ కోసం కూడా ఏర్పాట్లు చేశారు. పిడుగులు ప్లాంట్‌పై పడకుండా 'లైట్నింగ్‌ అరెస్టర్‌' ను ఏర్పాటు చేశారు. పిడుగులు పడే సమయంలో వాటిని పొడవైన రాడార్‌లు ప్లాంట్‌కు నష్టం కలగకుండా వాటిని స్వీకరించి భూమిలో నిక్షిప్తం చేస్తాయి. షాద్‌నగర్‌ విద్యుత్‌ సబ్‌స్టేషన్‌కు సరఫరా సోలార్‌ పవర్‌ ప్లాంట్‌ ద్వారా ఉత్పత్తి అవుతున్న మెగావాట్‌ సామర్థ్యం గల విద్యుత్‌ను కాంప్యాక్ట్‌ సబ్‌స్టేషన్‌ ద్వారా షాద్‌నగర్‌ విద్యుత్‌ సబ్‌స్టేషన్‌కు సరఫరా అవుతుంది. సోలార్‌ పవర్‌కు సంబంధించి యూనిట్‌కు రూ.5 చొప్పున ట్రాన్స్‌కో శాఖ వారు ఖరీదు చేయాల్సి ఉంటుందని ఎపి ట్రాన్స్‌కో డైరెక్టర్‌ చెన్నారెడ్డి, జిల్లా ఎస్‌.ఇ సదాశివరెడ్డి 'ప్రజాశకి'్తకి తెలిపారు. సంవత్సరానికి కనీసం 15 లక్షల యూనిట్లను ఉత్పత్తి చేసే అవకాశం ఈ పవర్‌ప్లాంట్‌కు ఉందని చెప్పారు. ఈ పవర్‌ప్లాంట్‌ వ్యవ స్థాపకులు రామకృష్ణ ఇండిస్టీస్‌ అధినేత కావడం విశేషం. రూ.16 కోట్ల వ్యయంతో ఈ ప్లాంట్‌ను నిర్మించారు. ప్లాంట్‌లో పనిచేసేందుకు సిబ్బంది అవసరం కూడా పెద్దగా ఉండదని టాటా బిపికి సంబంధించిన ప్రొజెక్ట్‌ ఇంజనీర్‌ ఆశీష్‌వర్మ ప్రజాశక్తికి వివరించారు.

Wednesday, 25 January 2012

పాత పేపరు - గోపాలం కె.బి. September 7th, 2011 పాత న్యూస్ పేపర్ ఎందుకూ పనికిరాకుండా పోతున్నది అనుకుంటూ ఉంటే, టులేన్ యూనివర్శిటీ పరిశోధకులు ఆశ్చర్యకరమయిన విషయాన్ని తెలియజేసి ‘ఆగండి’ అంటున్నారు. వారు ‘టియు-103’ అనే కొత్త బ్యాక్టీరియాను కనుగొన్నారు. అది పాత కాగితాన్ని తిని బ్యుటనాల్ అనే ఆల్కహాలును తయారు చేస్తుంది. దాన్ని, గాసోలీన్, కిరోసిన్‌ల లాగే కావలసిన చోట ఇంధనంగా వాడుకోవచ్చు. సెల్యులోజ్ అనే పదార్థంతో, వస్త్రాలు, కాగితాలు తయారవుతాయని తెలిసే ఉంటుంది. ఇది చక్కెరలతో తయారయినా మనం ఆరగించుకోలేము. సెల్యులోజ్ నుంచి నేరుగా బ్యుటనాల్‌ను తయారు చేయగల సూక్ష్మజీవి ఈ సరికొత్త టియు-103 ఒకటే. ఇది మొదటిసారిగా దొరికింది. గడ్డి, మొక్కలు అన్నింటిలోనూ సెల్యులోజ్ ఉంటుంది. ప్రపంచంలో దొరికే సేంద్రియ, జీవసంబంధ రసాయనాలలో అన్నింటికన్నా ఎక్కువగా ఉండేది ఇదే. దాన్ని ఆల్కహాలుగా మార్చడం గురించి రసాయన పరిశోధకులు చాలా ఏళ్లుగా కలలు కంటున్నారు. టులేన్‌లోని సెల్ అండ్ మాలిక్యులార్ బయాలజీ పరిశోధనశాలలో డేవిడ్ ములిన్ అనే ప్రొఫెసర్ దగ్గర పి.హెచ్.డీ కోసం పనిచేస్తున్న హర్షద్ వేలన్‌కర్ ఈ సూక్ష్మజీవి గురించి ఎంతో కాలంగా అనే్వషిస్తున్నాడు. అతని కృషి ఫలించింది. ప్రపంచమంతటా లక్షల టన్నుల సెల్యులోజ్ పదార్థాలను వ్యర్థంగా పడేస్తున్నారు. దాన్నంతా వాడుకుంటే ఇంధనం కొరత తీరుతుంది, అంటాడు మన హర్షద్. ఈ సూక్ష్మజీవి పశువుల పేడలో కనిపించింది. పశువులు సెల్యులోజ్ (గడ్డి)ని అరిగించుకుంటాయని తెలుసు. అందుకే వాటిని తెచ్చి పెంచారు. సూక్ష్మజీవిని వాడి బ్యుటనాల్ తయారు చేసే పద్ధతిని కూడా కనుగొన్నారు. నిజానికి బ్యుటనాల్‌ను పుట్టించగల సూక్ష్మజీవులన్నీ ఆక్సిజెన్ ఉంటే చనిపోతాయి. ఈ టియు-103 మాత్రం ఆక్సిజెన్‌ను తట్టుకుని ఉండి పని చేస్తుంది.మామూలుగా ఇతనాల్‌ను ఇంధనంగా వాడుతుంటారు. ఈ బ్యుటనాల్‌ను మాత్రం ప్రస్తుతం వాడుకలో ఉన్న ఇంజన్లలో, ఏ మాత్రం మార్పులు అవసరం లేకుండానే వాడుకోవచ్చు. ఉన్న గొట్టాల ద్వారానే దాన్ని రవాణా చేయవచ్చు. దీంతో వాహనాల మైలేజీ కూడా బాగా వస్తుంది. ఈ ఇంధనతో కాలుష్యం కూడా తగ్గుతుంది.

నిమ్మతో ఆరోగ్యం


నిమ్మతో ఆరోగ్యం

నిమ్మకాయ సుగుణాలు తెలియనివారుండరు. అవి చాలామందికి సుపరిచితమే. వంటింట్లో వంటకాలకు రుచిని అందివ్వటమే కాదు, సౌందర్య సాధనంగా కూడా నిమ్మకాయ ఉపయోగపడుతుంది. అన్ని ఋతువులలో లభించే నిమ్మకాయలో విటమిన్ సి అధికంగా వుంటుంది. ఖనిజ లవణాలు ఎక్కువగా వుండే నిమ్మకాయ, శరీరంలోని విష పదార్థాలను బయటకు తీసుకునిపోవడంలోనూ సహాయం చేస్తుంది. నిమ్మకాయ షర్బత్ కడుపులోని ఇబ్బందులను తొలగిస్తుంది. ఉదయమే పరగడుపున రెండు గ్లాసుల నిమ్మకాయ రసం తాగితే ఎంతో కాలంగా పీడిస్తున్న అజీర్ణం పోతుంది. వాయు సమస్యలూ, ఆకలి లేకపోవడం వంటి వాటిని దూరం చేస్తుంది. తెల్ల జీలకర్ర, నిమ్మరసం సైంధవ లవణం కలిపి ఎండబెట్టి పొడి చేయాలి. దీని 3 గ్రాముల చొప్పున తీసుకుంటే, జీర్ణశక్తి పెరుగుతుంది. ముఖానికి నవ్వే అందం అంటారు. మరి ఆ అందానికి మూలకారణమైన పలువరుసలు చక్కగా వుండి దంతాలు తెల్లగా మెరవాలంటే అర టీ స్పూన్ వేప పొడి, ఉప్పు, 1 టీస్పూన్ చక్కెర పొడి, పావు టీ స్పూన్ కర్పూరం పొడి, నాలుగు చుక్కల నిమ్మరసం కలిపి వారానికి రెండుసార్లు పళ్లు తోముకుంటే చిగుళ్లకు బలం కలగటంతోపాటు దంతాలపైన గార కూడా పోతుంది. ఒక గ్లాసు నీటిలో నిమ్మరసం కలిపి దాంతో పుక్కిలిస్తుంటే కొన్నిరోజులకు దుర్వాసన పోతుంది.
కొందరికి విపరీతంగా ఎక్కిళ్లు వస్తుంటాయి. అలాంటప్పుడు 2 గ్రాముల నిమ్మరసంలో 2 గ్రాముల తేనె కలిపి తీసుకుంటే ఆ ఎక్కిళ్లు ఆగిపోతాయి. అజీర్ణం అయినపుడు నిమ్మ, అల్లపు రసాలను సమానంగా కలిపి ఒకో చెంచా చొప్పున ఉదయం, సాయంకాలం తీసుకుంటే సరిపోతుంది. 5 గ్రాముల నిమ్మరసం, 15 గ్రాముల సున్నపు నీటి తేట, 2 గ్రాముల వాము పొడి, 10 గ్రాముల తేనె తీసుకుని బాగా కలపాలి. మూడు పూటలా ఈ మిశ్రమాన్ని తీసుకుంటే కడుపులో పురుగులు పోతాయి. లవంగాల పొడి, తేనె, నిమ్మరసం కలిపి పళ్లకూ, చిగుళ్లకూ రాస్తే పళ్లనొప్పి తగ్గుతుంది. నిమ్మరసంలో సైంధవ లవణం కలిపి కొన్నాళ్లపాటు తీసుకుంటే మూత్రపిండాలలోని రాళ్లు కరిగిపోతాయి. 1 గ్లాసు వేడి నీటిలో సగం నిమ్మ చెక్క పిండి, చిటికెడు ఉప్పు కలిపి పుక్కిలిస్తే గొంతు నొప్పి పోతుంది. గ్లిజరిన్‌లో నిమ్మరసం కలిపి కొన్నాళ్లుపాటు పెదవులకు పూసుకుంటే పగిలిన పెదవులు మెత్తబడి కోమలంగా తయారవుతాయి. దోమలు కుట్టిన చోట నిమ్మరసం రాసుకుంటే మంట తగ్గుతుంది. కొబ్బరినూనెలో నిమ్మరసం కలిపి దురదలున్న చోట పూస్తుంటే వారంలో అవి పోతాయి.
సౌందర్య సాధనంగా...
అర టీ స్పూన్ నిమ్మరసంలో 5 చుక్కల తేనె, 1 టీ స్పూన్ బార్లీపొడి కలిపి ముఖానికి రాసుకుని ఐదు నిముషాల తరువాత కడిగేయాలి. నిమ్మరసం ముఖ చర్మంలో అదనపు జిడ్డును తొలగిస్తుంది. నిద్రలేమివల్ల కళ్లకింద ఏర్పడే వలయాలను పోగొడుతుంది నిమ్మకాయ. 2 టీ స్పూన్‌ల దోసగింజల పొడికి, అర టీ స్పూన్ నిమ్మరసం, తగినన్ని పాలు పోసి దీన్ని కళ్లకింద రాసుకుని ఆరిపోయిన తరువాత కడిగేయాలి. కళ్లకింద నల్లదనం పోగొట్టటంతోపాటు, చర్మాన్ని మృదువుగా చేసే గుణమూ దీనికి వుంది. వనంలోనే కొందరికి చర్మం వదలైపోయి, వార్థక్యం వచ్చినట్లుగా కనిపిస్తుంటుంది. అలాంటివారికి చక్కని వైద్యం చేస్తుంది నిమ్మకాయ. అర కప్పు తొక్క తీసిన బంగాళా దుంప తురుము, అర టీ స్పూన్ నిమ్మరసం, 1 టీ స్పూన్ ఎర్ర చందనం వీటిని వేడి నీటిలో కలిపి పేస్టులా చేయాలి. ముఖంమీద శుభ్రమైన, పలుచని మస్లిన్ బట్టను మూసుకుని, దాని మీద ఈ పేస్టు ముఖమంతా పట్టించాలి. అరగంట తరువాత బట్ట తీసేసి ముఖం కడుక్కోవాలి. ముఖ చర్మానికి వన శోభ కలగుతుంది. నిమ్మ ఆకులతో నేచురల్ ఫేస్ ప్యాక్ చేసుకోవచ్చు. 4 నిమ్మఆకులు, 1 టీ స్పూన్ చొప్పున పెసరపప్పు, పెరుగు, అర టీ స్పూన్ కస్తూరి పసుపు వీటిని రుబ్బుకుంటే చక్కని నేచురల్ ఫేస్ ప్యాక్ తయారవుతుంది. దీంతో ముఖానికి ప్యాక్ వేసుకుని పది నిముషాల తరువాత కడిగేయాలి. 4 తులసి ఆకులు, 4 వేపచిగుళ్లు, 1 టీ స్పూన్ సెనగపిండి, అర టీ స్పూన్ నిమ్మరసం కలిపి మొటిమల మీద రాసి ఐదు నిముషాల తరువాత గోరువెచ్చని నీటితో కడగాలి. చర్మం మృదువై మొటిమలు పోతాయి. -సుబ్బలక్ష్మి

కంప్యూటర్ కబుర్లు బ్లాగు చేసి పెట్టండి


కంప్యూటర్ కబుర్లు బ్లాగు చేసి పెట్టండి

బ్లాగర్ డాట్ కామ్, బ్లాగ్ స్పాట్ డాట్ కామ్ అనే రెండు వెబ్ సైట్లూ జంట కవుల్లాంటివి. ఈ రెండిటినీ గూగుల్ సంస్థే నిర్వహిస్తోందని మళ్ళీ వేరేగా చెప్పనక్కర్లేదనుకుంటాను. వీటిలో బ్లాగర్ డాట్ కామ్ అనేది బ్లాగ్‌ల రూపకల్పనలో మనకు సాయం చేస్తుంది. అంటే, మన బ్లాగును రూపొందించడానికి బ్లాగర్ డాట్ కామ్‌నే వాడతాం. బ్లాగ్ స్పాట్ డాట్ కామ్ అనేది మనం రూపొందించిన బ్లాగ్ పేజీలను మన బ్లాగ్‌లో ఉంచేందుకు సాయపడ్తుంది.
బ్లాగ్‌లను రూపొందించేవారిని ‘బ్లాగర్’ అనీ, ఎప్పటికప్పుడు బ్లాగ్‌లో సమాచారాన్ని జోడించడాన్ని ‘పోస్ట్’ చేయడం అనీ అంటారు. ప్రతి బ్లాగూ ఒక వెబ్ పేజీయే. ప్రతి పోస్టూ అందులో ఒక చిన్న భాగమే. ఎటొచ్చీ సరికొత్త పోస్టింగులు ముందు కనిపిస్తాయి. పాతవి ఆ తరవాత (కింద) కనిపిస్తాయి. రోజులు గడిచే కొద్దీ, పోస్టింగ్‌లు పెరుగుతాయి కదా. అపుడు సహజంగానే బ్లాగులో పేజీలను యాక్సెస్ చేసేటపుడు కొంత ఆలస్యం అవుతుంది. దీన్ని నివారించడానికే పాత పోస్టింగ్‌లను ఆర్కివ్ చేయడం జరుగుతుంది. అవి మెయిల్ పేజీకి జోడించి ఉంటుంది. పరిశీలించి చూస్తే, ఏ బ్లాగ్‌నైనా సరే, కుడివేపున ఈ ఆర్కీవ్ అయిన పేజీలను మనం చూడొచ్చు. ఈ పేజీలను రూపొందించే బ్లాగ్ డాట్ కామ్ వాడటానికి ఎంతో సులభంగానే ఉంటుంది. ఎంత సులభం అంటే, ఎలాటి సాంకేతిక పరిజ్ఞానంలేని వాళ్ళైనా సరే, ఇట్టే బ్లాగులను ఏర్పాటు చేసేసుకోవచ్చు.
ఇంతకీ మీ బ్లాగ్ పేరెలా ఉంటుంది చెప్మా?
సాధారణంగా వెబ్ సైట్‌ల పేర్లు ఎలా ఉంటారుూ అంటే, తీతీతీ.్ఘశజ్ద్ఘూఇ్ద్య్యౄజ.శళఆ, తీతీతీ.జూళషష్ఘశ. ష్యౄఇలా ఉంటాయి. అంటే వెబ్‌సైట్ అడ్రస్‌లుతీతీతీతో మొదలై ఒక చుక్క ఉండి, తర్వాత ఆ వ్యక్తి, సంస్థపేరు ఉంటుంది. తిరిగి ఒక చుక్క ఉండి ష్యౄ లేదా శళఆ లేదా ళజూఖ లేదా యూ అనే 3 అక్షరాల్తో అంతమవుతుంధి. ష్యౄ అంటే కమర్షియల్ (వ్యాపారాత్మకం), శళఆ అంటే గ్రూపు లేదా నెట్ వర్క్ సంస్థ, ళజూఖ అంటే విద్యా సంస్థ అనీ, యూ అంటే ఆర్గనైజేషన్ అనీ సూఛించడానికి వాడతారు. ఉదాహరణకు సాయి అయితిక అనే పేరుగల పర్సనల్ వెబ్ సైటుందనుకొందాం. దాని పేరు తీతీతీ.ఒ్ఘ్ఘజఆజర్ఘీ.ష్యౄ అని ఉంటుంది. బ్లాగర్ డాట్ కామ్‌తో పేజీలు రూపొందించుకొని, ఈ వెబ్‌సైటులో ఉంచవచ్చు. దీనే్న ‘హోస్టింగ్’ అంటారు. మనకు ఎలాటి వెబ్ సైటూ లేదనుకోండి. అయినాసరే, బ్లాగ్ స్పాట్ డాట్ కామ్‌లో దాన్ని హోస్ట్ చేసుకోవచ్చు. అపుడు ఆ అడ్రస్ ఎలా ఉంటుందంటే, ఒ్ఘజ్ఘఆజర్ఘీ.ఇ్యఒఔ్యఆ.ష్యౄ అని ఉంటుంధి. అదీ తేడా. ఈ బ్లాగుల్లో మార్పులూ చేర్పులూ చేయాలీ అంటే, తిరిగి బ్లాగర్ డాట్ కామ్ వెబ్ సైటుని ఆశ్రయించాల్సి ఉంటుంది. బ్లాగ్‌లను రూపొందించేందుకు, వెబ్‌సైటును గురించి కొంత అవగాహన కల్గి ఉంటే బెటర్. అసలు వెబ్‌సైటు అంటే ఏమిటి? ఒక అంశానికి, వ్యక్తికి లేదా సంస్థకు చెందిన ఒక ఎలెక్ట్రానిక్ పుస్తకం లాటిది. ఆ అంశం (లేదా వ్యక్తి లేదా సంస్థ) గురించిన సమాచారాన్ని నిర్దిష్టమైన రీతిలో వివిధ హెడ్డింగ్‌లకింద ఉంచడం జరుగుతుంది. ఈ హెడ్డింగ్‌లనే లింక్ అంటారు. ఒక్కో లింక్‌కీ ఒక్కో వెబ్ పేజీ జోడించి ఉంచుతారు. ఒక పుస్తకంలో విషయ సూచిక ఉన్నట్టే, వెబ్‌సైట్‌లో ఈ లింక్స్ ఉన్న ప్రధాన పేజీని ఇండెక్స్ పేజీ లేదా హోమ్ పేజీ అంటారు. ప్రతి పేజీ కూడా హైపర్ టెక్ట్స్ మార్కప్ లాంగ్వేజీ అనే కంప్యూటర్ ప్రోగ్రామింగ్ భాషలో రూపొందుతుంది. దీనినే దఆౄ అంటారు. ఈ విషయాలన్నీ ఇదివరకే మనం తెలుకొన్నాం.
ఇంతకీ మీ బ్లాగు అడ్రెస్ ఏమిటి?
మీకు సొంతంగా బ్లాగ్ ఏర్పాటు చేసుకొంటే చాలదు. అది అందరికీ తెలిసేలా చేయాలి. మీ బ్లాగ్ గురించి ఎవరికైనా చెప్పాల్సి వస్తే, మీ బ్లాగ్ అడ్రెస్‌ని చెప్పాలి. దీనిని శ్రీ్గజ (యూనిఫాం రిసోర్స్ లొకేటర్) అంటారు. మరి మీ ఇంటికి ఎవరినన్నా రమ్మని ఆహ్వానించేటపుడు, మీ ఇంటి అడ్రెస్ చెప్పాలి కదా! ఇదీ అంతే!
మీ పేరుతోనే మీ బ్లాగ్ ఉండాలనే నియమం లేదు. అంటే ఒ్ఘజ్ఘజఆజర్ఘీ.ఇ్యఒఔ్యఆ.ష్యౄ అనే ఉంఢాలనే నియమేమీ లేదు. ఆసక్తికరమైన పేరుతో కూడా ఉంచవచ్చు. ఉదాహరణకు మేధావి లేదా బుక్ లవర్ ఇలా ఉంచవచ్చు. కొన్ని ఆసక్తికరమైన పేర్లు ఇవిగో.
బ్లాగ్‌లకి పేర్లుఇలానే ఉండాలనే నియమం ఏమీ లేదు. అందరికీ ఆసక్తి కల్గించేలాగా, అర్థవంతంగా, సృజనాత్మకంగా ఉంటే సందర్శకుల తాకిడి బాగా ఉంటుంది. అన్నట్టు ఈ యూఆర్‌ఎల్ చేర్చే పేరుతో అక్షరాలు 37కు మించరాదు. యూఆర్‌ఎల్‌లో పదాల /అక్షరాల మధ్యలో ఖాళీలు ఉండకూడదు. బ్లాగ్ టైటిల్ 10 అక్షరాలకు మించకూడదు. అంతా ఇంగ్లీష్‌లోనే ఉండాలి.

A teacher's tribute to scientists


 

A teacher's tribute to scientists

P. SAMUEL JONATHAN
SHARE  ·   PRINT   ·   T+  
‘Science is life and the scientists, who have made our lives better, should be revered'
Life's passion:M. Ashok shows around the scientist corridor at Chilakaluripet.— Photo: T. Vijaya Kumar
Life's passion:M. Ashok shows around the scientist corridor at Chilakaluripet.— Photo: T. Vijaya Kumar
A teacher has given shape to his enthusiasm for science by erecting statues of scientists on his estate. Maddukuri Ashok, who teaches physical sciences at Zilla Parishad High School at Yallamanda, has put up statues of 19 eminent scientists in what he calls a “scientist corridor.”
“The statues of Albert Einstein, Charles Darwin, Madam Curie, and Sarvepalli Radhakrishanan made of fibre glass have been put up in a row amidst green fields by this ardent enthusiast of science. A plaque carrying their names and the distinction they achieved is installed on the pedestal. Each bust-size image is erected on a granite pedestal and Mr. Ashok is now laying a BT road so that students can visit the place.
“I do not believe in God or religion. Science is life and the scientists, who have made our lives better, comfortable, and healthy should be revered,” Mr. Ashok says.
His keen interest in science prompted him to make fibre glass bust portraits and distribute them free to government schools. In 2004, he organised a procession of statues in Vijayawada and Hyderabad, catching the attention of the public. He published calendars and posters with details of important scientific discoveries in the last few centuries.
“I suffered monetary losses when I stretch my enthusiasm a bit too far. The rising cost of production has made my job difficult. But I could resume my interest after my real estate business picked up,” Mr. Ashok says.
Having set up the Maddukuri Foundation recently, Mr. Ashok is planning to set up a mini theatre to screen short films about the lives of scientists and origin of man.


Read more: http://physicalscience.webnode.com//
Create your own website for free: http://www.webnode.com

Take another look…


LIFE & STYLE » KIDS

Take another look…

FAIZA FATIMA HASAN
SHARE  ·   PRINT   ·   T+  
For a better peek: Kids at t the G.P. Birla Observatory and Astronomical Research Centre
Photo: Nagara Gopal
The HinduFor a better peek: Kids at t the G.P. Birla Observatory and Astronomical Research Centre Photo: Nagara Gopal
The new telescope, a Cassegrain-Schmidt, at the B.M Birla Science Centre is compact and computerised and this has some advanced abilities too.
Galileo's astounding observations got many angry responses from the conservative society that he lived in, but since then the telescope has come a long way.
Today, telescopes can potentially allow us to see the deepest, most unknown regions of space.
Telescopes are instruments that enable viewing far away objects more clearly.
B.M Birla Science Centre recently launched what is perhaps India's best amateur observatory. It was inaugurated by Nirmala Birla, wife of the late G.P. Birla, who gave Hyderabad its G.P. Birla Observatory because of his passion for astronomy and science.
The new observatory is a state-of-the-art five storeyed building with a cool, brand new telescope - The Cassegrain-Schmidt!
This telescope is compact and computerised and has some very advanced abilities.
Ninety-nine pre-assigned locations of important planets, stars and other bodies in the galaxy can be stored into the telescope for quick reference.
“In principle, this telescope has the potential to detect “exo-planets” or planets attached to other solar systems” adds Dr. B. G. Sidharth, Director General of the B. M. Birla Science Centre and also a very noted physicist.
For amateurs
The purpose of launching the new observatory is to cater to the amateur communities who have a passion for astronomy.
Not everyone knows that the Science Centre even offers certified courses on astronomy for amateurs, including children and that a large percentage of the many visitors that come to the B. M. Birla Science Centre each year are children from Andhra Pradesh as well as its neighbouring States.
“We hope that the new observatory will allow astronomy enthusiasts of all age groups enjoy or even contribute to astronomy.
It's not rare that amateurs and young students of astronomy sometimes make unexpected discoveries,” says Dr. Siddharth.

The legacy of Srinivasa Ramanujan


The legacy of Srinivasa Ramanujan

    M. RAM MURTY
    V. KUMAR MURTY
SHARE  ·   COMMENT (23)   ·   PRINT   ·   T+  
Mathematician Srinivasa Ramanujam
The Hindu Photo LibraryMathematician Srinivasa Ramanujam
His work has had a fundamental role in the development of 20th century mathematics and his final writings are serving as an inspiration for the mathematics of this century
On a height he stood that looked towards greater heights.
Our early approaches to the Infinite
Are sunrise splendours on a marvellous verge
While lingers yet unseen the glorious sun.
What now we see is a shadow of what must come.
Sri Aurobindo, Savitri, 1.4
The story of Srinivasa Ramanujan is a 20th century “rags to mathematical riches” story. In his short life, Ramanujan had a wealth of ideas that have transformed and reshaped 20th century mathematics. These ideas continue to shape mathematics of the 21st century. This article seeks to give a panoramic view of his essential contributions.
Born on December 22, 1887 in the town of Erode in Tamil Nadu, Ramanujan was largely self-taught and emerged from extreme poverty to become one of the most influential mathematicians of the 20th century. How did this transformation come about? Though it is difficult to pinpoint any precise causes for this transformation, one can delineate several significant events in his life that enabled this to come about.
Ramanujan cultivated his love for mathematics singlehandedly and in total isolation. As a child, he was quiet and often kept to himself. Those that knew him were impressed by his shining large eyes, which were his most prominent features. He had a prodigious memory, and at school he would entertain his friends by reciting the various declensions of Sanskrit roots, and by repeating the value of the constant ‘pi' to any number of decimal places. This was a foreshadow of what was to come, since later in life he would write a monumental paper that would connect the computations of the digits of ‘pi' to modular forms, a theory developed largely in the 20th century. It is a theory which is definitely at the forefront of modern mathematics today and we will expand on this theme later in this article.
At the age of 12, he borrowed from a friend a copy of Loney's book on Plane Trigonometry, published by Cambridge University Press in 1894. This book goes far beyond high school trigonometry and also deals with the rudiments of calculus. But the book that changed his life was Carr's book titled, A Synopsis of Elementary Results in Pure and Applied Mathematics. This book is a compilation of 6,165 theorems, systematically arranged but with practically no proofs. It is not a remarkable book, and Ramanujan's use of it to propel himself to the centre stage of 20th century mathematics, has made the book remarkable. It was largely used by students of Carr who were preparing for the entrance examination in mathematics at Cambridge University. Ramanujan used the book to master all of 18th and 19th century mathematics. He set about to demonstrate each of the assertions of the book, using only his slate to do the calculations. He would jot down the formula to be proved, and then erase it with his elbow, and then continue to jot down some more formulas. In this way, he worked through the entire book. People used to speak of his “bruised elbow.” Sadly, he took Carr's book as a model for mathematical writing and left behind his famous notebooks containing many formulas but practically no proofs. Many mathematicians have made it an industry to prove these formulas that Ramanujan had scribbled into his notebooks since he left no hint as to how he got them.
In college
In 1903, Ramanujan entered the Government College in Kumbakonam. Unfortunately, he failed in the examination since he neglected his non-mathematical subjects.
Four years later, he entered another college in Chennai, and the same thing happened. Finally, in 1912, he secured a job as a clerk in the Madras Port Trust Office. Here, his duties were light and so he could devote a lot of time to his mathematical discoveries — which he recorded in his now celebrated notebooks. As luck would have it, the manager of the office, S.N. Aiyar, was also a mathematician who took kindly to Ramanujan and encouraged him in his mathematics. It was he who suggested to Ramanujan that he write to G.H. Hardy, a famous mathematician at Trinity College, Cambridge University.
In his famous 1913 letter to Hardy, Ramanujan attached 120 theorems as a representative sample of his work. Some of these formulas Hardy had already seen in the course of his own research work. But many of the other formulas, he had not. It took over two hours for him to analyse the letter in order to determine if it was written by a crank or a genius. He consulted with his eminent colleague J.E. Littlewood, also of Trinity College, and together they sat down for three more hours. Finally they concluded that it was the work of a genius. Hardy wrote: “They must be true, because if they were not true, no one would have had the imagination to invent them.'' With this certificate of approval, Ramanujan was invited to come to Trinity College to work with Hardy.
To England
Ramanujan sailed to England in March 1914, just a few months before the outbreak of the First World War. From 1914 to 1917, Hardy and Ramanujan collaborated on more than half a dozen research papers. At the same time, Ramanujan published more than 30 research papers in three years. The most notable of these collaborations involved the partition function. This function counts the number of ways a natural number can be decomposed into smaller parts. Hardy and Ramanujan developed a new method, now called the circle method, to derive an asymptotic formula for this function. If one analyses Ramanujan's first letter to Hardy, we already find a hint of the method in his work done in India while at the Port Trust Office. This method is now one of the central tools of analytic number theory and is largely responsible for major advances in the 20th century of notoriously difficult problems such as Goldbach's conjecture, Waring's conjecture and other additive questions. The circle method and its refinements constitute a very large area of current research and will probably continue to be so in the 21st century.
Another fundamental paper of Hardy and Ramanujan concerns what is now called the “normal order method.'' This method analyses the behaviour of additive arithmetical functions. In their paper, Hardy and Ramanujan showed that a random natural number usually has about log log n prime factors. Their paper led to the creation of an entirely new field of mathematics called probabilistic number theory. In the 20th century, it was largely developed by P. Erdos, M. Kac and J. Kubilius.
Landmark paper
But the paper that really changed the course of 20th century mathematics was the one written by Ramanujan in 1916, modestly titled “On certain arithmetical functions.'' In this paper, Ramanujan investigated the properties of Fourier coefficients of modular forms. At that time the theory of modular forms was not even developed. However, Ramanujan enunciated three fundamental conjectures that served as a guiding force for the development of the theory.
Indeed, the first two of his conjectures led to the development of what is now called Hecke theory, formulated by E. Hecke in 1936, twenty years after Ramanujan's paper. Many would have heard of Fermat's last theorem and how this was solved in 1994 by A. Wiles. But few will know that Wiles used Hecke's theory in an essential way in his solution of the problem.
However, it was the last of the three of Ramanujan's conjectures that created a sensation in 20th century mathematics. This conjecture, later called Ramanujan's conjecture, came to play a pivotal role in the towering edifice known as the Langlands program, a far-reaching program articulated by R.P. Langlands in the 1970s. This program connected two seemingly different fields of mathematics, namely representation theory and number theory. But the proof of Ramanujan's third conjecture came about through another route connecting algebraic geometry to number theory in the framework of general conjectures of A. Weil concerning the number of solutions of equations over finite fields. The Weil conjectures were settled by P. Deligne in 1974 and he was awarded the Fields Medal (the mathematical equivalent of the Nobel Prize) for this work. Ramanujan's third conjecture turned out to be a special case of the Weil conjecture. Ramanujan's conjecture is now seen as a spectral line of a larger spectrum of conjectures, now called the generalised Ramanujan conjecture.
Last letter to Hardy
If Ramanujan's 1916 paper created a sensation by heralding the development of the theory of modular forms, his last letter to Hardy, written literally on his deathbed in 1920, outlining a new theory of “mock theta functions,” is now creating a greater sensation in the development of 21st century mathematics. Indeed, Ramanujan's theory of mock theta functions was largely ignored for much of the 20th century and was discussed in sporadic papers. Part of the difficulty was with Ramanujan's vague definition of a mock theta function. In fact, he never defined them. Rather, he listed 17 protypical examples of these new functions and formulated general conjectures concerning them. Many mathematicians tried to prove these conjectures without a proper theory in place. To a large extent, they succeeded in proving most of Ramanujan's conjectures. However, the unifying conceptual framework was missing. This framework was discovered only recently in 2002 in the doctoral thesis of S. Zwegers, written under the direction of D. Zagier. This thesis laid the groundwork for a new theory of mock modular forms.
We now understand Ramanujan's theory of mock theta functions as a special case of a larger theory of mock modular forms. These objects are generalisations of modular forms and thus include the classical theory of Hecke as a special case. Already, the richer theory of mock modular forms is bearing new mathematical fruit, as is evidenced by some recent breakthrough works of J. Bruinier, J. Funke, K. Bringman, and K. Ono. For instance, Bruinier and Ono recently derived an algebraic formula for the partition function using the theory of mock modular forms. M. Dewar and R. Murty noticed that this Bruinier-Ono formula can be used to derive the Hardy-Ramanujan formula for the partition function and thereby avoid the complicated circle method. These new viewpoints are definitely the tip of the iceberg, concealing a larger mass of mathematical truth.
In 1987, the famous physicist, Freeman Dyson, predicted: “The mock theta functions give us tantalising hints of a grand synthesis still to be discovered. It should be possible to build them into a coherent group-theoretical structure, analogous to the structure of modular forms which Hecke built around the old theta functions of Jacobi. This remains the challenge for the future.”
Foreshadow
Indeed, Dyson's prediction is right on target. The recent advances in the theory are just a foreshadow of greater things to come. Once the theory of mock modular forms is in place, it is only a question of time to marry the theory to the larger program of Langlands. This may be delicate, and one should not go too fast lest we miss the scenic beauty along the route. Nevertheless, it is the direction of the future. Thus, Ramanujan's work has had a fundamental role in the development of 20th century mathematics and his final writings are serving as an inspiration for the mathematics of this century.
We do not know how Ramanujan discovered his theorems. On this point, Hardy wrote: “It was his insight into algebraic formulae, transformations of infinite series and so forth, that was most amazing. On this side most certainly I have never met his equal, and I can compare him only with Euler or Jacobi. He worked far more than the majority of modern mathematicians, by induction from numerical examples; all his congruence properties of partitions, for example, were discovered in this way. But with his memory, his patience and his power of calculation, he combined a power of generalisation, a feeling for form, a capacity for rapid modification of his hypothesis, that were often really startling, and made him, in his own peculiar field, without a rival in his day.”
Cultural legacy
But beyond the mathematical legacy, Ramanujan left behind a cultural legacy. He appeared in the midst of the British colonial rule of India and now stands as an iconic symbol of an India that was rediscovering itself, an India that was rising up to take its place in the 20th century. This meant that science and education were to be revived and energised to meet the challenges of the new, independent India. Ramanujan's role in such a revival is best described in the words of Nobel laureate Subramanyam Chandrasekhar who, on the occasion of Ramanujan's birth centenary in 1987, wrote: “It must have been a day in April 1920, when I was not quite ten years old, when my mother told me of an item in the newspaper of the day that a famous Indian mathematician, Ramanujan by name, had died the preceding day; and she told me further that Ramanujan had gone to England some years earlier, had collaborated with some famous English mathematicians and that he had returned only very recently, and was well-known internationally for what he had achieved. Though I had no idea at that time of what kind of a mathematician Ramanujan was, or indeed what scientific achievement meant, I can still recall the gladness I felt at the assurance that one brought up under circumstances similar to my own, could have achieved what I could not grasp. I am sure that others were equally gladdened. I hope that it is not hard for you to imagine what the example of Ramanujan could have provided for young men and women of those times, beginning to look at the world with increasingly different perceptions. The fact that Ramanujan's early years were spent in a scientifically sterile atmosphere, that his life in India was not without hardships, that under circumstances that appeared to most Indians as nothing short of miraculous, he had gone to Cambridge, supported by eminent mathematicians, and had returned to India with every assurance that he would be considered, in time, as one of the most original mathematicians of the century — these facts were enough, more than enough, for aspiring young Indian students to break their bonds of intellectual confinement and perhaps soar the way that Ramanujan did.”
In these words of Chandrasekhar, we see the remarkable legacy left behind by Ramanujan. For the life of Chandrasekhar was equally full of hardships. Born in the same village surroundings as Ramanujan, he went to study at Cambridge and became a leading astrophysicist of the 20th century, finally being awarded the Nobel Prize in 1983. Indeed, he soared the way Ramanujan did.
But a scientist belongs to no nation. Many scientists from around the world have testified that they gained inspiration from the life story of Ramanujan. For Ramanujan embodies that marvellous miracle of the human mind to frame concepts and to use formulas and symbols as tools of thought to probe deeper into the mysteries of the universe, and the mysteries of one's own being. As long as the spirit of inquiry is alive, his legacy will pass from one generation to the next.
(M. Ram Murty is Professor and Head of the Department of Mathematics at Queen's University in Kingston, Ontario, Canada. V. Kumar Murty is Professor and Head of the Department of Mathematics at University of Toronto, Toronto, Ontario, Canada.)